
Examiners’ Report: Final Honour School
of Mathematics Part B Trinity Term 2021

January 28, 2022

Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2021 (2020) (2019) (2018) (2017) 2021 (2020) (2019) (2018) (2017)

I 51 (73) (59) (58) (51) 39.84 (46.5) (39.07) (38.16) (38.63)
II.1 58 (66) (67) (67) (64) 45.31 (42.04) (44.37) (44.08) (48.48)
II.2 18 (13) (20) (25) (11) 14.06 (8.28) (13.25) (16.45) (8.33)
III 1 (4) (4) (2) (3) 0.78 (2.55) (2.65) (1.32) (2.27)
P 1 (0) (0) (2) (0) 0.64 (0) (0) (1.52) (0)
F 0 (1) (0) (0) (0) 0 (0.66) (0) (0) (0)
Total 157 (151) (152) (132) (141) 100 (100) (100) (100) (100)

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.

As in previous years there were no vivas conducted for the FHS of
Mathematics Part B.
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• Marking of scripts.

BE Extended Essays, BSP projects, and coursework submitted for the
History of Mathematics course were double marked.

The remaining scripts were all single marked according to a pre-
agreed marking scheme which was strictly adhered to. For details of
the extensive checking process, see Part II, Section A.

• Numbers taking each paper.

See Table 5 on page 12.

B. New examining methods and procedure in the 2021 ex-
aminations

In light of the ongoing Covid 19 pandemic, the University changed the
examinations to an open-book format and rolled out a new online exam-
inations platform. An additional 30 minutes was added on to the exam
duration to allow candidate the technical time to download and submit
their examination papers via Inspera.

C. Changes in examining methods and procedures currently
under discussion or contemplated for the future

The department agreed that the examinations would be in person in Trinity
Term 2022.

D. Notice of examination conventions for candidates

The first Notice to Candidates was issued on 19 March 2021 and the second
notice on 30 April 2021.

All notices and the examination conventions for 2021 are on-line at
http://www.maths.ox.ac.uk/members/students/undergraduate-courses/
examinations-assessments.
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Part II

A. General Comments on the Examination

The examiners would like to convey their grateful thanks for their help
and cooperation to all those who assisted with this year’s examination,
either as assessors or in an administrative capacity. The chairman would
particularly like to thank Elle Styler for administering the whole process
with efficiency, and also to thank Nicole Collins, Charlotte Turner-Smith
and Waldemar Schlackow.

In addition the internal examiners would like to express their gratitude
to Professor Marco Schlichting and Professor Anne Skeldon for carrying
out their duties as external examiners in a constructive and supportive
way during the year, and for their valuable input at the final examiners’
meetings.

Standard of performance

The standard of performance was broadly in line with recent years. In
setting the USMs, we took note of

• the Examiners’ Report on the 2020 Part B examination, and in par-
ticular recommendations made by last year’s examiners, and the
Examiners’ Report on the 2020 Part A examination, in which the 2021
Part B cohort were awarded their USMs for Part A;

• a document issued by the Mathematics Teaching Committee giving
broad guidelines on the proportion of candidates that might be ex-
pected in each class, based on the class percentages over the last five
years in Mathematics Part B, Mathematics & Statistics Part B, and
across the MPLS Division.

Having said this, as in Table 1 the proportion of first class degrees in
Mathematics alone awarded (39.84%) was high, and the proportion of II.2
and below degrees in Mathematics awarded (15.48%) was low, compared
to the guidelines.
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Setting and checking of papers and marks processing

Requests to course lecturers to act as assessors, and to act as checker of the
questions of fellow lecturers, were sent out early in Michaelmas Term, with
instructions and guidance on the setting and checking process, including a
web link to the Examination Conventions. The questions were initially set
by the course lecturer, in almost all cases with the lecturer of another course
involved as checker before the first drafts of the questions were presented
to the examiners. Most assessors acted properly, but a few failed to meet
the stipulated deadlines (mainly for Michaelmas Term courses) and/or to
follow carefully the instructions provided.

The internal examiners met at the beginning of Hilary Term to consider
those draft papers on Michaelmas Term courses which had been submitted
in time; consideration of the remaining papers had to be deferred. Where
necessary, corrections and any proposed changes were agreed with the
setters. The revised draft papers were then sent to the external examiners.
Feedback from external examiners was given to examiners and to the
relevant assessor for response. The internal examiners at their meeting in
mid Hilary Term considered the external examiners’ comments and the
assessor responses, making further changes as necessary before finalising
the questions. The process was repeated for the Hilary Term courses, but
necessarily with a much tighter schedule.

Due to the Pandemic, Exam Papers were revised and set to be open book.
Camera ready copy of each paper was signed off by the assessor, and then
submitted to the Examination Schools.

Candidates accessed and downloaded their exam papers via the Weblearn
system at the designated exam time. Exam responses were uploaded to
Weblearn and made available to the Exam Board Administrator 48 hours
after the exam paper had finished.

The process for Marking, marks processing and checking was adjusted
accordingly to fit in with the online exam responses. Assessors had a short
time period to return the marks on the mark sheets provided. A check-sum
was also carried out to ensure that marks entered into the database were
correctly read and transposed from the mark sheets.

All scripts and completed mark sheets were returned, if not by the agreed
due dates, then at least in time for the script-checking process.

A team of graduate checkers, under the supervision of Barbara Galinska
and Elle Styler, sorted all the marked scripts for each paper of this ex-
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amination, cross checking against the mark scheme to spot any unmarked
questions or parts of questions, addition errors or wrongly recorded marks.
Also sub-totals for each part were checked against the mark scheme, noting
correct addition. In this way a number of errors were corrected,and each
change was signed by one of the examiners who were present throughout
the process. A check-sum was also carried out to ensure that marks en-
tered into the database were correctly read and transposed from the marks
sheets.

Throughout the examination process, candidates were treated anonymously,
identified only by a randomly-assigned candidate number, until after all
decisions on USMs, degree classes, mitigating circumstances notices to
examiners, prizes, and so on, had been finalized.

Standard and style of papers

It was noted at the Final Exam Board meeting that the papers 3.4 Algebraic
Number Theory and 4.3 Distribution Theory were set too easy this year.
These papers will need to be reviewed, especially if the exams are held as
open-book again.

Timetable

Examinations began on Monday 31st May and finished on Tuesday 22nd
June.

Determination of University Standardised Marks

We followed the Department’s established practice in determining the
University standardised marks (USMs) reported to candidates. Papers for
which USMs are directly assigned by the markers or provided by another
board of examiners are excluded from consideration. Calibration uses
data on the Part A performances of candidates in Mathematics and Mathe-
matics & Statistics (Mathematics & Computer Science and Mathematics &
Philosophy students are excluded at this stage). Working with the data for
this population, numbers N1, N2 and N3 are first computed for each paper:
N1, N2 and N3 are, respectively, the number of candidates taking the paper
who achieved in Part A average USMs in the ranges [69.5, 100], [59.5, 69.5)
and [0, 59.5).
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The algorithm converts raw marks to USMs for each paper separately. For
each paper, the algorithm sets up a map R→ U (R = raw, U = USM) which
is piecewise linear. The graph of the map consists of four line segments:
by default these join the points (100, 100), P1 = (C1, 72), P2 = (C2, 57),
P3 = (C3, 37), and (0, 0). The values of C1 and C2 are set by the requirement
that the number of I and II.1 candidates in Part A, as given by N1 and N2,
is the same as the I and II.1 number of USMs achieved on the paper. The
value of C3 is set by the requirement that P2P3 continued would intersect
the U axis at U0 = 10. Here the default choice of corners is given by U-values
of 72, 57 and 37 to avoid distorting nonlinearity at the class borderlines.

The results of the algorithm with the default settings of the parameters
provide the starting point for the determination of USMs, and the Exam-
iners may then adjust them to take account of consultations with assessors
(see above) and their own judgement. The examiners have scope to make
changes, either globally by changing certain parameters, or on individ-
ual papers usually by adjusting the position of the corner points P1,P2,P3

by hand, so as to alter the map raw → USM, to remedy any perceived
unfairness introduced by the algorithm. They also have the option to in-
troduce additional corners. For a well-set paper taken by a large number
of candidates, the algorithm yields a piecewise linear map which is fairly
close to linear, usually with somewhat steeper first and last segments. If
the paper is too easy or too difficult, or is taken by only a few candidates,
then the algorithm can yield anomalous results—very steep first or last
sections, for instance, so that a small difference in raw mark can lead to a
relatively large difference in USMs. For papers with small numbers of can-
didates, moderation may be carried out by hand rather than by applying
the algorithm.

Following customary practice, a preliminary, non-plenary, meeting of ex-
aminers was held two days ahead of the plenary examiners’ meeting to
assess the results produced by the algorithm alongside the reports from
assessors. The examiners reviewed each paper and report, considered
whether open book examination process affected candidates and reviewed
last year’s statistics. The examiners discussed the preliminary scaling
maps and the preliminary class percentage figures. Adjustments were
made to the default settings as appropriate, paying particular attention to
borderlines and to raw marks which were either very high or very low.

Table 2 on page 8 gives the final positions of the corners of the piecewise
linear maps used to determine USMs.
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In accordance with the agreement between the Mathematics Department
and the Computer Science Department, the final USM maps were passed
to the examiners in Mathematics & Computer Science. USM marks for
Mathematics papers of candidates in Mathematics & Philosophy were cal-
culated using the same final maps and passed to the examiners for that
School.

Comments on use of Part A marks to set scaling boundaries

None.

Mitigating Circumstance Notice to Examiners

A subset of the examiners (the ‘Mitigating Circumstances Panel’) attended
a pre-board meeting to band the seriousness of the individual notices to
examiners. The outcome of this meeting was relayed to the Examiners at
the final exam board, who gave careful regard to each case, scrutinised the
relevant candidates’ marks and agreed actions as appropriate.

The full board of examiners considered 40 notices in the final meeting. The
Board also received a total number of 16 MCEs carried over from the 2020
Part A Final Mathematics Exam Board. The examiners considered each
application alongside the candidate’s marks and the recommendations
proposed by the Part A 2020 Exam board. The outcomes for these have
been recorded on a spreadsheet report on Mitigating Circumstances Notice
to Examiners from Part A.

All candidates with certain conditions (such as dyslexia, dyspraxia, etc.)
were given special consideration in the conditions and/or time allowed
for their papers, as agreed by the Proctors. Each such paper was clearly
labelled to assist the assessors and examiners in awarding fair marks.
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Table 2: Position of corners of the piecewise linear maps

Paper P1 P2 P3 Additional N1 N2 N3

Corners
B1.1 16.72;37 29.1;57 42.70 50;100 6 19 10
B1.2 9.54;37 16.6;57 43.6;57 50;100 13 22 10
B2.1 10;37 19;57 38;72 50;100 14 15 4
B2.2 14;58 27.8;73 50;101 12 17 4
B3.1 10.05;37 20;57 39;72 50;100 19 26 6
B3.2 13.04;39 22.7;59 39.2;74 50;102 7 11 3
B3.3 13.04;39 22.7;59 39.2;74 50;102 13 7 3
B3.4 12.52;37 21.8;57 42.8;72 50;100 19 20 5
B3.5 10;37 27;57 40;72 50;100 11 16 8
B4.1 7.75;37 13.5;57 36;72 50;100 13 19 5
B4.2 7;37 17;57 33;72 50;100 9 15 4
B4.3 10.86;37 18.9;57 41;70 50;100 5 3 1
B4.4 17.64;37 28;60 32.2;72 50;100 9 10 7
B5.1 11.43;37 19.9;57 30.4;72 50;100 9 10 7
B5.2 9.02;37 15.7;57 32;72 50;100 21 24 8
B5.3 7;37 18;57 26;72 50;100 14 11 5
B5.4 9.19;37 19;57 31;72 50;100 14 10 5
B5.5 10;36 21;56 40.2;71 50;99 19 27 13
B5.6 13.37 27.9;57 38.4;72 50;100 10 11 4
B6.1 13;37 27;57 40;72 50;100 5 10 5
B6.2 16;37 34.2;57 41;72 50;100 2 4 1
B6.3 8.1;37 17;57 40;70 50;100 1 8 0
B7.1 10;37 24;57 37.6;72 50;100 14 12 5
B7.2 13.56;37 22;57 35;6;72 50;100 10 7 6
B7.3 7.47;37 15;57 28;72 50;100 9 8 5
B8.1 9.88;37 18;57 40;72 50;100 16 36 9
B8.2 10;37 16;57 37;72 50;100 14 45 15
B8.3 9.88;37 17.2;57 41;72 50;100 14 45 15
B8.4 16.89;36 29;56 44;69 50;99 6 25 7
B8.5 12.35;37 21.5;57 43;72 50;100 9 25 4
BSP 2000;100 2 7 3
SB1 14.19;37 24.7;57 49.5;72 66;100 10 35 6
SB1 34;100 10 35 6
SB2.1 12.52;37 20;57 42.8;72 50;100 15 38 7
SB2.2 13.37 24.1;57 43.6;72 50;100 16 36 11
SB3.1 9;37 16.1;57 35.6;72 50;100 24 48 13
SB3.2 18.38;37 29;57 41;70 50;100 3 4 5
SB4 22;54 50;100 0 0 08



B. Equality and Diversity issues and breakdown of the re-
sults by gender

Table 3: Breakdown of results by gender

Class Number
2021 2020 2019

Female Male Total Female Male Total Female Male Total
I 13 38 51 18 55 73 13 46 59
II.1 22 36 58 28 38 66 18 49 67
II.2 4 14 18 3 10 13 5 15 20
III 1 0 1 1 3 4 1 3 4
P 0 1 1 0 0 0 0 2 2
F 0 0 0 0 1 1 0 0 0
Total 50 107 15 50 107 157 37 114 151
Class Percentage

2021 2020 2019
Female Male Total Female Male Total Female Male Total

I 32.5 43.18 75.68 36 51.4 43.7 35.14 40.35 39.07
II.1 55 40.91 95.91 56 35.51 45.76 48.65 42.98 44.37
II.2 10 15.91 25.91 6 9.35 7.68 13.51 13.16 13.25
III 2.5 0 2.5 2 2.8 2.4 2.7 2.63 2.65
P 0 0.93 0.93 0 0 0 0 0 0
F 0 0 0 0 0.88 0.66 0 0 0
Total 100 100 100 100 100 100 100 100 100

Table 3 shows the performances of candidates broken down by gender.
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Table 4: Rank and percentage of candidates with this or greater overall USMs

Av USM Rank Candidates with %
this USM and above

87 1 1 0.78
83 2 2 1.56
82 3 6 4.69
81 7 7 5.47
80 8 9 7.03
78 10 12 9.38
77 13 16 12.5
76 17 20 15.62
75 21 23 17.97
74 24 27 21.09
73 28 33 25.78
72 34 41 32.03
71 42 44 34.38
70 45 50 39.06
69 51 53 41.41
68 54 61 47.66
67 62 69 53.91
66 70 77 60.16
65 78 86 67.19
64 87 89 69.53
63 90 95 74.22
62 96 97 75.78
61 98 101 78.91
60 102 106 82.81
59 107 109 85.16
59 107 109 85.16
58 110 112 87.5
57 113 117 91.41
56 118 118 92.19
55 119 121 94.53
53 122 122 95.31
52 123 123 96.09
51 124 125 97.66
50 126 127 99.22
48 128 128 100
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C. Detailed numbers on candidates’ performance in each
part of the examination

Data for papers with fewer than six candidates are not included.

The number of candidates taking each paper is shown in Table 5.

Individual question statistics for Mathematics candidates are shown below
for those papers offered by no fewer than six candidates.

Paper B1.1: Logic

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.19 21.19 3.63 31 0
Q2 14.58 14.58 6.49 26 0
Q3 14.89 14.89 7.29 9 0

Paper B1.2: Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 9.59 9.59 5.49 14 3
Q2 19.43 19.43 5.18 35 0
Q3 14.67 14.67 5.48 45 1

Paper B2.1: Introduction to Representation Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.61 15.61 3.62 31 0
Q2 20.79 20.79 5.61 14 0
Q3 9.50 9.50 4.55 10 0

Paper B2.2: Commutative Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 9.28 9.28 4.25 25 0
Q2 13.55 13.55 7.16 20 0
Q3 12.16 12.16 5.99 19 0
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Table 5: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

B1.1 33 35.45 9.81 65.3 16.59
B1.2 47 31.64 10.56 68.11 11.55
B2.1 33 31.88 8.48 68.15 9.38
B2.2 33 22.24 9.87 64.79 15.58
B3.1 51 33.94 8.27 70.24 11.02
B3.2 22 38 8.04 74 13.04
B3.3 24 35.25 8.77 74.04 10.06
B3.4 44 35.8 8.82 69.3 9.71
B3.5 36 35 8.82 69.56 13.02
B4.1 33 27.76 8.77 67.55 8.27
B4.2 28 26.5 8.76 66.32 10.35
B4.3 9 35.33 11.18 68.44 13.08
B4.4 5 - - - -
B5.1 20 25.25 6.32 63.85 10.79
B5.2 49 26.86 8.13 67.43 10.3
B5.3 29 24.76 8.76 67.69 13.24
B5.4 28 26.96 7.18 66.96 10.08
B5.5 41 33.27 9.27 66.96 10.08
B5.6 27 32.96 8.82 65.59 14.11
B6.1 20 34.7 9.64 66.1 16.37
B6.2 7 36.57 8.32 65 13.3
B6.3 6 34.5 9.22 68.5 7.97
B7.1 29 34.07 7.42 69.62 11.33
B7.2 21 31.05 8.11 67.38 11.92
B7.3 21 21.86 8.7 63.1 14.3
B8.1 35 31.6 8.89 66.83 9.66
B8.2 19 32.26 9.17 71.16 10.69
B8.3 42 28.9 8.76 63.88 8.87
B8.4 25 36.32 7.96 63.24 10.42
B8.5 33 35.64 7.96 69.76 10.66
SB1 8 33.88 11.21 70.25 6.11
SB2.1 23 33.83 7.24 66.39 6.44
SB2.2 22 34.59 5.68 65.64 5.98
SB3.1 46 27.33 7.81 65.72 8.69
SB3.2 2 - - - -
SB4 1 - - -
CS3a 1 - - - -
CS4b 2 - - - -
BO1.1 8 - - 68.88 9.66
BO1.1X 8 - - 68.13 10.59
BEE 5 - - 76.8 7.89
BSP 8 TBC TBC TBC TBC
102 13 - - 65.08 4.5
127 9 - - 61.33 23.67
129 1 - - -
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Paper B3.1: Galois Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.92 14.92 5.71 49 0
Q2 - - - - 2
Q3 14.83 14.83 3.82 46 0

Paper B3.2: Geometry of Surfaces

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.43 20.43 3.69 14 0
Q2 20.07 20.07 4.94 14 0
Q3 16.81 16.81 5.52 16 0

Paper B3.3: Algebraic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.13 16.13 5.03 16 0
Q2 18.00 18.00 4.80 24 0
Q3 19.50 19.50 3.55 8 1

Paper B3.4: Algebraic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.29 14.29 5.21 14 0
Q2 19.56 19.56 3.66 39 0
Q3 17.49 17.49 5.34 35 0

Paper B3.5: Topology and Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.45 18.45 5.03 20 0
Q2 16.44 16.44 5.27 36 0
Q3 17.39 18.69 5.38 16 2

13



Paper B4.1: Functional Analysis I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.57 14.57 4.49 28 0
Q2 13.14 13.14 6.07 29 0
Q3 14.11 14.11 3.76 9 0

Paper B4.2: Functional Analysis II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.39 14.39 4.76 28 0
Q2 11.38 11.38 5.86 16 0
Q3 12.15 13.08 5.79 12 1

Paper B4.3: Distribution Theory and Fourier Analysis: An Introduction

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.78 17.78 6.16 9 0
Q2 17.56 17.56 5.32 9 0

Paper B4.4: Fourier Analysis and PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 - - - 4 0
Q2 - - - 3 0
Q3 - - - 3 0

Paper B5.1: Stochastic Modelling and Biological Processes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.10 12.10 3.61 20 0
Q2 - - - 3 0
Q3 11.61 11.88 3.27 17 1

Paper B5.2: Applied PDEs
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Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.61 13.61 4.60 38 0
Q2 11.76 11.76 4.86 29 0
Q3 14.77 14.77 5.04 31 0
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Paper B5.3: Viscous Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11 11 5.72 7 0
Q2 12.82 13.15 5.14 27 1
Q3 11.92 11.92 5.19 24 0

Paper B5.4: Waves and Compressible Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.56 13.56 6.49 16 0
Q2 14.71 14.71 2.61 24 0
Q3 11.56 11.56 3.69 16 0

Paper B5.5: Further Mathematical Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.92 15.92 6.26 13 0
Q2 16.38 16.38 3.70 32 0
Q3 17.11 17.11 6.13 37 0

Paper B5.6: Nonlinear Systems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.77 19.48 6.11 52 1
Q2 - - - 5 0
Q3 15.08 15.08 3.93 24 2

Paper B6.1: Numerical Solution of Differential Equations I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.10 16.10 6.97 10 0
Q2 18.33 18.33 2.48 18 1
Q3 17.17 18.45 6.49 11 0
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Paper B6.2: Numerical Solution of Differential Equations II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 - - - 6 0
Q2 18.71 18.71 5.31 7 0
Q3 - - 1 0

Paper B6.3: Integer Programming

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.50 16.50 6.83 6 0
Q2 - - - 4 0
Q3 - - - 2 0

Paper B7.1: Classical Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.75 14.75 3.59 24
Q2 18.30 18.30 4.61 27 0
Q3 20.00 20.00 5.33 7 0

Paper B7.2: Electromagnetism

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.90 15.90 4.82 20 0
Q2 15.79 15.79 4.34 14 0
Q3 - - - 6 0

Paper B7.3: Further Quantum Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 10.73 10.73 3.43 15 0
Q2 9.11 9.25 3.76 8 1
Q3 12.61 13.18 5.46 17 1
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Paper B8.1: Martingales through Measure Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.96 15.96 4.82 27 0
Q2 17.79 17.79 4.69 28 0
Q3 11.80 11.80 4.99 15 0

Paper B8.2: Continuous Martingales and Stochastic Calculus

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.75 17.75 4.36 16 0
Q2 - - - 5 0
Q3 15.06 15.06 5.87 17 0

Paper B8.3: Mathematical Models of Financial Derivatives

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.55 15.55 4.81 33 0
Q2 12.80 13.17 5.64 24 1
Q3 14.26 14.26 4.91 27 0

Paper B8.4: Communication Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.33 16.14 5.64 14 1
Q2 18.21 18.21 4.29 19 0
Q3 19.76 19.76 3.80 17 0

Paper B8.5: Graph Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.55 18.55 5.47 33 0
Q2 16.84 16.84 3.72 32 0
Q3 - - 1 0
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Paper SB2.1: Foundations of Statistical Inference

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.82 18.82 2.50 22 0
Q2 15.90 15.90 6.56 10 0
Q3 13.93 14.64 5.48 14 1

Paper SB2.2: Statistical Machine Learning

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.90 15.90 4.22 21 0
Q2 18.56 18.56 2.99 16 0
Q3 18.57 18.57 3.26 7 0

Paper SB3.1: Applied Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.11 13.56 5.92 43 2
Q2 13.92 13.92 3.13 38 0
Q3 13.18 13.18 5.21 11 0

Assessors’ comments on sections and on individual ques-
tions

The comments which follow were submitted by the assessors, and have
been reproduced with only minimal editing. The examiners have not in-
cluded assessors’ statements suggesting where possible borderlines might
lie; they did take note of this guidance when determining the USM maps.
Some statistical data which can be found in Section C above has also been
removed.

B1.1: Logic

Question 1 This question was attempted by nearly all students. Part (a)
was generally done correctly with no issues. In (b), parts (i) and (ii) were
generally done with no problems, but in (iii) many students missed that
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derivability required an additional step (simplest via completeness). Part
(c) was generally done without problems. The derivation in (d) was the
most challenging part of the question, but was completed effectively by
most students via a variety of different paths, with the result that this
question overall saw in general strong scores.

Question 2 This question was attempted by a substantial majority. Part
(a) was generally well done with students demonstrating the adequacy in
the first case and recognizing the reason for inadequacy in the second. The
reverse direction in (b) caused some difficulty with a number of students
not seeing how to complete the argument. The logical validity in (c) was
generally done thoroughly. The (non-)elementary equivalence in (d) part
(i) was generally recognized though many students did not give a formula
in the given language. Part (ii) required a carefully set up compactness
argument. Quite a few gave a careful and correct argument, though a
number gave erroneous purported demonstrations that the Theorem is
elementary.

Question 3 This question was attempted by a considerably smaller number
of students. Part (a) was generally done well. Part (b) was often done a
bit carelessly, perhaps under time pressure, with sentences in (i) and (ii)
not saying quite the right thing, or with no regard to the requirement (II).
Part (iii) was again very mixed with some students giving a clearly argued
(negative) answer, while other answers were cursory. Part (i) of (c) was an
exercise left in lectures and was generally well done. It also represented
a small hint for part (ii) and most students did remark the appropriate
check when using axioms of type A4. This part also was often done well,
sometimes by somewhat circuitous routes.

B1.2: Set Theory

This was the second year in which exams were done remotely, in open-book
format, and the first year in which all teaching was affected, or devastated,
by the Covid-19 pandemic. People were working, without, for much of the
time, any possibility of personal, face-to-face contact, under circumstances
which varied from suboptimal to appalling. Under these circumstances, it
is this assessor’s opinion that all students who battled through the year and
succeeded in putting pen to paper for the exam deserve to be congratulated.
It has only added to the difficulties of this year that under the remote open-
book format, arrangements are unavoidably less secure.
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It was decided that exam questions should include less bookwork and be
a little harder. The result, for this paper, was that the range of marks was
very wide. Some candidates, who got very low marks, might have done
rather better in a year in which they could demonstrate some competence
with the subject by doing bookwork (reproducing proofs of theorems etc).

The individual questions:

Question 1. This was judged by the candidates to be a difficult question;
fewer people did it and there were fewer very high marks.

In part (a), there were many good answers. The commonest error was in
proving that any maximal element of a suitable family of partial orders was
a total order. People took a non-total order and tried to prove that it was
not maximal by extnding it. Quite often the relation that they extended it
to, was not transitive. In many cases, people would have discovered the
error, and perhaps corrected it, if they’d attempted to prove that the order
was indeed a partial order.

In (b)(iii), many people got confused about which sets where elements of
which other sets, a crucial question when comparing the “altered” version
of the transfinite recursion theorem with the original.

The difficulties that people found with parts (c) and (d) were unsurprising.
Perhaps the approach to take with these was to think for a few minutes very
hard about what the proposed theorems are actually saying and what they
mean, before deciding that the proof of the statement in (c) is little different
from what it would have been if the order had been a well-ordering, while
the statement in (d) is absurd.

Question 2. This is about ordinals. The commonest serious error in part
(a) was to confuse ordinal and cardinal arithmetic, and assert that ωω is
uncountable. In addition, some people unthinkingly assumed that both
distributive laws held, which gave rise to errors in calculating (ω+3)(ω+1).

In (b)(i), it’s worth making a fuss of the fact that sup A is countable, because
the statement that a countable union of countable sets is countable does
depend on the Axiom of Choice.

The errors and difficulties that people found in (b)(ii) and (iii) were unsur-
prising. The way around this was probably for a candidate to think about
fixed-point theorems they might know in topology (it’s reasonable to think
of “tidy”, or more conventionally, normal functions as continuous). The
Tarski Fixed Point Theorem is unhelpful here, partly because it doesn’t
apply, and partly because the proof in the lecture notes follows a different

21



pattern, not depending on any notion of continuity.

Question 3. This is about cardinals. Part (a) follows a pattern often seen on
this paper over the years. The most difficult parts were (iv) and (v), where
in both cases the answer is 2ℵ0 ; the Continuum Hypothesis turns out to be
irreleveant to this, though many candidates incorrectly either believed it
necessary or assumed it without comment and perhaps unconsciously.

The main point in (b)(i) is that if λ is a limit cardinal, the existence of
κλ depends on the axiom scheme of Replacement; in set theories without
replacement, κω need not exist.

A common route to success in part (b)(ii) was to prove by induction on α
that α ≤ κα, and then use Hartogs’ Theorem.

0.1 B2.1 Introduction to Representation Theory

Question 1. Very popular with the students, with all but three having a
good go at it. Part (a) was done very well by the majority, although only
a few people gave convincing and correct arguments for the injectivity of
the map in part (a)(iv): the equation ae = 0 does not immediately imply
a = 0 without using the AeA = A condition. Part (b)(i) was done very
well by most people, but unfortunately (ii) proved to be too hard. Having
clearly understood the connection between the character table of a finite
group and the structure of its group algebra would have been helpful here:
the quaternion group has four distinct linear characters defined over the
reals, which have to contribute a direct factor of R4 in the group ring RQ8

— as an R-algebra. A moment’s thought then shows that this direct factor
must be equal to the eRQ8 in the question. So there are a total of sixteen
idempotents in eRQ8, one for each subset of the standard basis for R4.

Question 2. Attempted by roughly two thirds of the students. It was
mostly done well. Those students who managed to correctly compute the
conjugacy classes in part (a) are the ones who tended to get a very high
mark for this question overall. Unfortunately, the converse was also true:
conjugacy class structure is very important in the representation theory of
finite groups and any minor errors committed when calculating conjugacy
classes tend to have substantial effects on what follows. For part (c) there
were some quick proofs of the fact that G/N is S3 such as observing that
otherwise it would be C6 hence abelian and hence the derived group would
be contained in N which contradicted the conclusion of part (b).

Question 3. Least popular and only a few students managed to get to the
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end of it. Arguably, part (c) was the most difficult question on this paper.
One common mistake was to confuse the two different notions of “char-
acter”, namely the trace of a representation and a group homomorphism
with values in the group of non-zero complex numbers. In part (a)(iv),
several people thought the subgroup H that one had to identify was equal
to N. In fact, H is the stabiliser of the character of N under the G-action
on the set of characters of N that was considered in part (a)(i): whilst this
stabiliser always contains N, it is in general strictly larger than N.

B2.2: Commutative Algebra

All questions were about equally popular.

Question 1: In (b), several candidates mistakenly concluded that P(t) is
a minimal polynomial in the sense of field theory. This is not correct, as
K—R is not a field extension. In (c), very few students gave a full proof of
injectivity. The proof follows from a careful analysis of the non-divisibility
of a homogenous polynomial by y2

− x2
− x3.

Question 2: in (e) (i) very few candidates noticed that the existence of
maximal elements can be deduced without appealing to Zorn’s lemma.
The existence follows from the noetherian property directly.

Question 3: In (f), very few candidates actually verified that the proposed
upper bound for the partial order actually has the right properties.

B3.1: Galois Theory

Q1 and Q3 were by far the most popular questions.

Question 1.In (e) of Q1, very few students exploited the fact that all the
quadratic extensions of a given finite field coincide. Most solutions in-
volved quadratic residues. The other parts of the question were generally
solved satisfactorily.

Question 2 was solved satisfactorily by the (very few) students who con-
sidered it, with the exception of (a) (i). For this part of the question, notice
that it follows from the definitions that the minimal polynomial of alpha
over M1 is both a divisor and a multiple of P(x), and hence must coincide
with it.
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Question 3. Here quite a few students struggled with (b). Note that the
minimal polynomial of rho over Q(omega) must be of degree 1 or 5 by
Kummer theory. It cannot be 1 because the degree of Q(omega) over Q is
not divisible by 5. Hence it must be five. The other parts of the question
were generally solved satisfactorily, although part (d) was a hurdle for
some.

B3.2: Geometry of Surfaces

Question 1. The majority of candidates did this question well and got a
high mark (typically 22). Often (d) was not well done, but this only cost
candidates 1–2 marks. Lower scoring candidates usually did the atlases
in (a) badly, for example, writing down an ‘atlas’ for T2 consisting of two
discs, which only covered T2

\ {point}. The usual way of proving (b) was to
make a chart W on X#Y by gluing U \ {disc} and V \ {disc} for charts U,V on
X,Y, and candidates often failed to explain why W was diffeomorphic to an
open subset ofR2 (e.g. by ‘inverting’ V \ {disc} around the boundary circle
of the disc inR2 � C by z 7→ z̄−1 and taking W = U \ {disc}∪ z̄−1[V \ {disc}]).

Question 2. Most candidates got (a) correct or nearly correct. For (b),(c),
usually either candidates understood the question well and got a high
total mark (20–24), or understood it badly and got a low total mark (6–11).
Candidates often lost a mark in (b) by forgetting to list the branch points.
Few candidates answered the final part of (c) really well.

Question 3. Many candidates made calculation mistakes in (a),(b), which
hampered their answers to (c). In (a), having got the equation for principal
curvatures in the form (Eλ − L)(Gλ − N) = 0 as F = M = 0, a depressing
number of candidates multiplied out and used the quadratic formula rather
than just writing down λ = L/E,N/G. In (b) a common mistake was to fail
to reparametrize the curve by arc-length, leading to the wrong answer.

For the last part of (c), I was hoping for the answer that the displayed
equation comes from a Gauss–Bonnet Theorem with boundary, with a
missing term 2πχ(R), which is zero since χ(R) = 0 as R is an annulus.
Disappointingly, nobody said this. Some candidates cut the annulus into a
rectangle and used Gauss–Bonnet for a disc with polygon boundary, which
got full marks for this part. For (d), I was hoping for the answers: (i) κg = 0
by (b), or fixed curve of a reflection symmetry; (ii) by reflection symmetry;
and (iii) this is a straight line, and geodesic (length-minimizing) in R3, so
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is also geodesic in X. Few candidates saw all three.

The spread of marks, from low to high, was greater than I would have
expected in a non-COVID year. I think this is because of the minimization
of bookwork for open-book exams, candidates that did not understand the
material well tended to go wrong, and score poorly thereafter.

B3.3 Algebraic Curves

Question 1: This question had 17 attempts, of which 9 were in the 18-25
mark range and 4 in the 13-17 range. Most candidates got the existence
of the 1-parameter pencil of conics including three singular conics, though
very few spotted the noncalculational proof for the singular examples (they
are just the three line pairs through the four points). The last part of (a)
proved difficult, despite the hint. Quite a few candidates got confused
between complex symmetric and Hermitian matrices, and hardly any saw
the significance of there being 3 singular conics in the pencil, giving 3 dis-
tinct eigenvalues for diagonalisation. There was also confusion about how
conics transformed under linear maps–many thought it was conjugation
rather than A 7! PAPt. Part (b) was much better done, and most candi-
dates were confident with using Bezout’s theorem. There were some neat
arguments here, using the symmetries of the curve to avoid calculations.

Question 2: This question was very popular and every candidate at-
tempted it, with 15 achieving marks in the 18-25 range and 8 getting marks
in the 13-17 range. Characteristic p examples had come up in problem
sheets, but several candidates did get into difficulties with the example
here. There were some excellent answers however. In part (b) the Hes-
sian calculations were generally done well, and most candidates found the
x + y + z factor, showing reducibility of the Hessian curve. Some did not
spot that the Hessian in fact completely factors into 3 linear factors.

Question 3: This was the most sophisticated question, dealing with Riemann-
Roch, and only received 9 attempts. However most of these were very
good, with 7 in the 18-25 range and the other two in the 13-17 range. It was
good to see that most candidates were quite expert with using Riemann-
Roch, and interpreting the results.
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B3.4: Algebraic Number Theory

Question 1: was answered by 17 (out of 52) candidates; Parts (a),(b),(c)(i),(iv)
were answered well, but some had trouble with Parts (c)(ii),(iii),(v), and in
particular showing that (2) is the product of three distinct prime ideals.

Question 2: was answered by 46 (out of 52) candidates, and it was done
to a very high standard, with only a few difficulties, mainly in (c)(iii),
where a common mistake was to talk about the principal ideal of→ before
establishing that→ is in the ring of integers. Question 3 was answered by
41 (out of 52) candidates; part (a) was generally well answered; the most
common error was to forget to check that [P2] was not [P3]2; part (b) was
very well answered; in part (c), a common error was to assume that three
elements of order 2 must generate C2 ×C2 ×C2, without checking whether
they are independent; many candidates did not attempt part (d), but those
who did answer it made good progress with it.

B3.5 Topology and Groups

Question 1: (31 attempts) This question tested the understanding of the
base change for the fundamental group. Points we gained were the homo-
topies where clearly described. Part c proved more difficult though some
excellent solutions were given. Generally the question was well done with
several perfect scores.

Question 2: (53 attempts) Generally students made good attempts. The
most difficult parts were part b (ii) and (iv). Instead of considering maps
out of the group to detect the properties in question some candidates
tried to use Tietze transformations which invariably led to mistakes. In
part c points were lost because candidates thought retractions had to be
homotopy equivalences.

Question 3: (30 attempts) Candidates who had absorbed the last section of
the course and had geometric intuition did generally well. In the first ques-
tion, only few summarised the bookwork on the Galois correspondence
well.

B4.1: Functional Analysis I

Question 1 was solved by most of the students. The first part of 1a) as well
as the proof that the space is complete for α ≥ 0 was generally well solved.
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The proof of incompleteness of Yα for negative α caused more problems
than expected as many students did not realise that e.g. a cut-off sequence
of a constant function could be used as non-convergent Cauchy sequence.
The last part of a) was designed to be challenging and while many students
obtained some partial points only few students gave a complete answer.
Many students solved 1b) very well and obtained full marks. The first
part of 1c) was generally well solved by students attempting this part of
the question, though few realised that the easiest way of arguing would
be to view E as kernel of a bounded linear operator. The last part of c) was
more challenging but several students came up with examples of finite
sequences with sum 0 which converge in `p to an element for which the
required sum does not converge.

Question 2 was solved by about two thirds of the students. The first part
of question 1) turned out to be more difficult than anticipated. While
most students argued by contradiction, many did not realise that they
needed to adjust the corresponding bookwork proof by normalising the
usual sequence (xn) with ‖Txn‖ > n and ‖xn‖ = 1 by setting e.g. x̃n = 1

√
nxn

instead of x̃n = 1
nxn. Nearly all students realised that the second part of 2a)

was a standard consequence of the definition of a bounded linear operator.
The second part of 2 was generally well solved. In the first part some
points were lost as students did not explain why the resulting function
was continuous or as students tried to prove that the operator norm for the
specific example was 3 rather than 3/2. About half of the students realised
that since all functions in the image are differentiable away from 0 the
map cannot be surjective and many also realised that there is a connection
between the map being injective and the set of zeros of g. The first and
second part of 2c) could have been solved by small adjustments of proofs
of two corollaries of Hahn-Banach, but not many students realised this
and instead tried to either prove these parts from scratch or by somehow
trying to apply such corollaries rather than their proofs. Conversely most
of those who attempted the last bit of 3c) realised that they needed to use
Hahn-Banach though few discussed why an extension with norm 8 exists
if and only if the original map has operator norm no more than 8.

Question 3 was only solved by about a quarter of the students. The first
part was a standard exercise on dual operators and spectrum and was well
solved. The second part was an application of bookwork and while most
students realised that one inequality simply follows by triangle inequality,
not many used that as 1 + ‖T‖ ∈ σ(I + T) one can obtain the other inequality
from the fact that the spectrum is contained in the corresponding closed
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ball. Part c) was designed to be the most challenging part of the question
and that proved to be true. While several students realised that CDn

−DnC =
nDn−1(Id + D), and several also remarked that (Id + D) is invertible, no one
managed complete the contradiction argument by arguing that the norm of
the left hand side of (CDn

−DnC)(Id + D)−1 = nDn−1 is bounded from above
by a fixed multiple of

∥∥∥Dn−1
∥∥∥. The first part of Question 3c) follows as the

kernel of functionals has codimension 1 and hence a finite intersection of
such kernels must be non-empty if the space is infinite dimensional, though
not many students solved this question. Most students who attempted the
last part of 3c) realised that this is an application of a corollary of Hahn-
Banach.

B4.2: Functional Analysis II

Question 1: This question was tried by all candidates. In (a), most candi-
dates had no problem except for showing that (X, 〈·, ·〉T) is a Hilbert space
implies (*) holds, where one typically used either the Open mapping the-
orem or the Inverse mapping theorem. In (b), a number of candidates
had difficulties in realising that the space to apply the Riesz representation
theorem to is (X, 〈·, ·〉T), rather than the original space. Those who saw
this might fail to check that the linear map they considered was indeed
bounded with the new inner product. Part (c) was attempted by a slightly
smaller number of candidates with variable degrees of success. Successful
candidates saw right away that P2 = P and P∗ = P, but a quicker solution
perhaps involves checking directly that P is the identity on ImT (which is
closed in view of (*)) and is trivial on (ImT)⊥.

Question 2:This question was tried by about half of the candidates. Those
who recognised the relevance of (a)(i) with the proof of the Open mapping
theorem handled this part without an issue. Half of those who tried (a)(i)
went on to handle (a)(ii) successfully. (b)(i) and the first half of (b)(ii) were
handled well mostly. Many candidates saw the idea of the second half of
(b)(ii) but did not realise the subtlety that the linear functionals on L2 are
represented by a function in L2 rather than a function in X. To use the first
half, one would need to use the completeness of the trigonometric system.
(b)(iii) was attempted by a very small number of candidates who all had
some right ideas.

Question 3: All parts of this question were attempted by about half of the
candidates. (a) was handled well with some minor exceptions. For (b), the
majority of the candidates tried to contradict the closedness of ImA if A
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was infinite-dimensional. Only a fraction realised that this part could be
handled rapidly with the help of the Baire category theorem. For the last
part of (c), successful candidates usually considered the restriction of A to
a suitable finite dimensional subspace. The first part of (d) was handled
mostly reasonably. Only one candidate successfully handled the last part
of (d), where one considered the extension of a finite dimensional matrix
in Jordan form.

B4.3: Distribution Theory and Fourier Analysis: An Intro-
duction

There were only 11 candidates taking the exam and their performances
were generally quite good. No issues were reported and the marking
scheme was used throughout.

Question 1: Most did well on this question, though nobody got the full 25
marks. Marks were lost by all candidates in (a)(iii) when proving that the
concrete distributional derivative has order one (and not merely at most
one). Some marks were also lost in (b), where in some cases it appears
that the candidates ran out of time. However, most of the candidates that
attempted this part had the correct approach.

Question 2: Most did well on this question, though nobody got the full
25 marks. Part (a) tests the candidates understanding of support of a
distribution. This did not cause any difficulties in the majority of cases
and there were some excellent solutions from a few of the candidates.
Marks were generally lost in part (b), where some candidates failed to find
particular solutions or presented incomplete arguments.

Question 3: Nobody attempted this question.

B4.4: Fourier Analysis and PDE’s

There were only 7 candidates taking the exam and, though it was a chal-
lenging paper, their performances were quite good. No issues were re-
ported and the marking scheme was used throughout.
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Question 1: The majority attempted this question and got full or close to
full marks on part (a). Marks were lost by many candidates in the second
half of (b) that asked to find the distributional limit of the imaginary part of
the holomorphic function. Part (c) went surprisingly well and those who
attempted it got almost full marks on it.

Question 2: About half the candidates attempted this question. It went
reasonably well and there was one really excellent solution obtaining the
full 25 marks. Part (a) is an elaborate variant of a calculation done in
lectures for the Bessel kernel and those who had paid attention to that
would have had no difficulties completing it. Part (b) tests the Plancherel
theorem in a particular example and was done well by those who attempted
it. Part (c) requires candidates to localize their result from (b) and deduce
from (a) that the differential operator in question is hypoelliptic.

Question 3: About half the candidates attempted this question. Judging
from the outcome it was the hardest question as all who attempted it strug-
gled with the last part. Parts (a)(i), (ii) are largely variants of bookwork and
went well. Candidates who lost marks in part (a) did so on (a)(iii), mainly
for presenting a sloppy argument. Part (b)(i) did not present a problem for
those who attempted it, but its implementation in (b)(ii) turned out to be a
challenge and nobody got it quite right.

B5.1: Stochastic Modelling and Biological Processes

The exam structure was comparable to the B5.1 exam in the previous
year (2020) with three questions covering similar parts of the course as
in 2020. Comparing to the year 2020, the average raw mark across the
whole cohort went down, which has to be understood in the context of
the unusual way the examining was conducted in 2020, when students
were required to drop some of their Part B exams, because of pandemic
arrangements. Some self-selection resulted so that the candidates opting
to take the 2020 exam were students with a very good understanding of the
course material, while in 2021, the submitted results were combinations
of some very sound solutions together with some less successful solution
attempts.

Some self-selection also applied to the popularity of each question in this
year exam (2021). Most of the candidates opted to submit Questions 1 and
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3. There were only four solutions handed in for Question 2, which was
not necessarily “more difficult”, but it did cover the material from the last
third of the course. In fact, while the most popular Questions 1 and 3 have
almost the same average raw mark, the candidates who handed in Question
2 did so well, that the average raw mark of Question 2 was higher than
the raw marks of Questions 1 and 3. In Question 2, candidates adapted
the derivations from the Lecture Notes to slightly modified problems.
For the introductory questions, they could apply the formulas for the
diffusion coefficient and the velocity auto-correlation function from the
Lecture Notes, while for more difficult questions, they demonstrated their
good understanding of the course material by modifying the derivations
from the Lecture Notes.

In Questions 1 and 3, most of the submitted solutions achieved at least 10
raw marks in each of these questions, which illustrates that even the weaker
candidates did study the corresponding part of the material and were able
to apply the concepts from the Lecture Notes. For more advanced topics,
candidates knew which part of the Lecture Notes contained the relevant
part of the theory. The difference between better and worse solutions of
the more advanced part was that some candidates were able to notice that
the theory cannot be applied as it was in the Lecture Notes and that some
modifications were necessary.

B5.2: Applied PDEs

Question 1: (a) Most students got the characteristic ODE + initial values
right and also the solution; a few failed to notice that the problem was stated
in conservation form and used f where f’ would have been appropriate.
Many students also used the Jacobian / envelope method as starting point
for discussing the question when the classical solution ceases to exist, but
some then failed to realise what to look for (ie to take an appropriate
min/max), but a small number got to the final result. So this was one
of the harder parts of the equation. (b) was generally well done, though
some students did use other expression in the causality inequality for the
characteristic speeds than values of f’. Some then got the algebra right
to find the range and argument for the final statement of the question
correctly. (c) Quite students got a, b, c and alpha, beta right, but some
forgot to test invariance of the initial condition. Some students got the
ODE wrong in (ii), others didn’t finish the question, but a reasonable
number managed to get ‘the other’ solution for w. Some forgot to discuss
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the impact of the initial conditions. (iii) was only attempted by a few
students and obtaining the shock position was a challenge.

Question 2: Candidates found this question challenging. Part (a)(i) was
generally done well, and many students got the relations for alpha and
beta right, but some had trouble due to algebraic errors. The resulting
ODE was required the application of integrating factors which was found
by some students. This was critical to answer other aspects of (a) and also
(b). Part (b) the relation for (d omega/dt) was done well, but expressing this
in self-similar variables was more challenging. Only very few candidates
tackled (b)(ii).

Question 3: This question was generally well done. Typical instances
were mistakes and omissions were made are as follows: In (a), the mean-
ing of the delta function was interpreted physically though no physical
context was implied. Also, quite a number of candidates got beta wrong
(frequently beta=0 instead of -1/2) which had knock on effects regarding
the normalisation condition. In (b), the connection with (a) was not made
properly and the alpha dependence of the Green’s function made with-
out clear derivation, frequently leading to erroneous results. In (c), the
verification of the normalisation condition was omitted. In (d), which was
correctly done by many candidates, sometimes the notation was unclear re-
garding the arguments of the Green’s function or some of the contributions
dropped (e.g. sum of only three free-space Green’s functions).

B5.3: Viscous Flow

There were a few good solutions, some nearly perfect, but the overall
standard was low. Candidates seemed to have insufficient familiarity with
routine calculations and thus ran out of time before reaching the more
challenging parts of questions. Several candidates started questions with
dimensionally incorrect scalings, e.g. scaling a velocity with a length.
Question 1 was much the least popular, but the average marks for the
three questions were quite similar.

Question 1 – only a quarter of candidates attempted this question.

Several attempts for part (a) used a material volume instead of the required
space-fixed volume. The energy flux across the boundary of a space-fixed
volume includes an advective term of u times the energy density.
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In part (b) almost everyone wrote the viscous term incorrectly as µ∂yyu
instead of ∂y(µ∂yu). The latter comes from the divergence of the stress σ
with σxy = µ∂yu. However, full marks were given for correct solutions in
later parts that followed from this incorrect starting point.

In part (c) the velocity scale should be U = GH2/µ0. The parameter ε is
half the Prandtl number times the ratio of the kinetic energy 1

2ρU2 to the
thermal energy ρcvTw based on the velocity scale U = GH2/µ0 and the wall
temperature Tw. The ratio of kinetic to thermal energy characterises the
relative change in temperature through viscous heating.

In part (d) there is no steady solution if both boundaries are insulating. The
heat generated viscously cannot leave the channel containing the fluid.

In part (e) the correct answer is û1 = (1/72)(1 − ŷ)2(ŷ4 + ŷ2 + 8ŷ − 14).
The corresponding solution for the incorrect problem with µ outside the
derivatives is longer.
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Question 2 – almost all candidates attempted this question.

In part (a) candidates were expected to scale U =
√

FL to derive dimension-
less equations involving only the Reynolds number. Some candidates left
U arbitrary, while others balanced the body force with the viscous force,
not looking ahead to (b).

In part (b) some candidates omitted viscosity completely in what are sup-
posed to be viscous boundary layer equations. The y-component of the
body force does not appear in the leading-order y-momentum equation,
which is (1/δ)∂yp = O(1).

In part (c) it is easiest to deduce that the pressure gradient vanishes using
the far field behaviour, where the flow is at rest, then rewrite the equations
from (b) using a streamfunction. Some candidates formed the vorticity
equation first, which takes longer. Several candidates omitted the body
force, and even the pressure, right from the start, then re-inserted a body
force at the end to match the given result.

Many candidates kept ∇2T with both Txx and TYY instead of applying the
boundary layer scaling. A few kept Txx only, which caused later difficulties
in finding a similarity solution. Some candidates replaced DT/Dt with ∂xT.

It is easiest to write T = T∞+ (Tw−T∞)T̂ so that T̂ = 1 on Ŷ = 0 and T̂→ 0 as
Ŷ → ∞, then choose the velocity scale U to make the dimensionless body
force just T̂.

In part (d) one needs both the x-momentum equation and the temperature
equation ψ̂ŶT̂x̂ − ψ̂x̂T̂Ŷ = Pr−1 T̂ŶŶ to determine α = 3/4, γ = 1/4 and β = 0.
The last is determined by the temperature boundary condition T̂ = 1 on
Ŷ = 0. The other equation satisfied by f and g is

−
3
4

f f ′′ +
1
2

f ′2 = f ′′′ + g.

Part (e) received only one complete solution. When Pr � 1 the given
expression for gc solves the equation g′′ + (3/4) Pr f g′ = 0 in the boundary
layer at infinity with η = O(1/Pr) and f (η) ≈ f (∞). The same expression
reduces to gc(η) = 1 + O(Pr) when η = O(1). This solves the leading-order
problem g′′ = 0 with g(0) = 1 and matches to the solution in the boundary
layer at infinity.
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Question 3 – this was the next most popular

Part (a) was mostly done well, though a few candidates started with di-
mensionally incorrect scalings.

In part (b) candidates were encouraged to use incompressibility to solve
for û in terms of ŵ, which was specified to be independent of r̂. Instead,
almost all candidates first solved for û in terms of p̂, as in lectures, then
solved for ŵ. Full marks were given if this was done correctly. However,
many candidates tried to use the “constant” of integration for ŵ to impose
the boundary condition ŵ = ±ĥt̂ on ẑ = ±ĥ. No choice of constant can
satisfy both boundary conditions. The constant must vanish, keeping ŵ
an odd function of ẑ. The boundary conditions then determine the elliptic
equation that p̂ must satisfy. No integration across the layer is needed to
find the velocity field.

To establish global mass conservation candidates were expected to show
that the rate of change in the dimensionless volume 2πĥ of fluid between
the two discs equals the volume flux across the edge at r̂ = 1. This is the
only part that requires an integration across the layer. It was not enough to
observe that ∇ · u = 0. A few candidates tried to use a different geometry
from lectures with a constant height and a varying radius.

Part (c) attracted few attempts. Some candidates restarted the problem
from scratch instead of balancing the imposed force with the integral of the
pressure from part (b) across the discs. The velocity scale is U = δ2F/(µR),
and the height scale is H = h(0). For the last part one needs to solve
dr̂/dt̂ = û(r̂(t̂), 0, t̂). The fluid element initially at r̂ = r̂0, ẑ = 0 reaches the
edge r̂ = 1 at time (3π/16)(r̂−8/3

0 − 1) that goes to infinity as r̂0 → 0.

B5.4: Waves and Compressible Flow

Question 1: The fairly routine exercise in deriving the forced wave equa-
tion in part (a) was generally well handled, although many candidates did
not adapt the methodology covered in lectures and therefore lost marks
for missing out parts of the argument (such as the justification for the
existence of a velocity potential for the perturbed flow). The application
of standard methodology to the new wavemaker problem in part (b) was
generally well done, though many candidates lost marks for inaccurate
algebraic manipulations of the roots of an auxiliary equation. There were
many good attempts at part (c)(i), but only a few spotted the correct secular
solution in part (c)(ii).
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Question 2: The standard Stokes waves problem in part (a)(i) caused
few difficulties apart from an occasional lack of accuracy. The algebraic
manipulations stumped the majority in the rider in part (a)(ii) despite
them mirroring a similar example in the lecture notes. The exercise in
separation of variables in part (b)(i) was generally well done, though only
a handful made the most judicious choice for the form of general solution
of the ODE for F(x) and hence avoided substantial unnecessary algebraic
manipulations. Only a few candidates sought the correct secular solution
in part (b)(ii) and many repeated their analysis of part (b)(i) to derive
invalid solutions.

Question 3: Many more attempts than expected ran into algebraic difficul-
ties in part (a), which was supposed to be a relatively routine manipulation
of the Rankine-Hugoniot conditions supplemented by one additional con-
straint. The non-standard punctured-membrane problem in part (b)(i) was
not well done, with many attempts failing to justify the domains of the dif-
ferent solutions or to give sufficient explanation. Very few candidates
made any headway with part (b)(ii) and there were numerous inaccurate
or incomplete sketches of the characteristic diagram. Overall this question
was found much harder than anticipated.

B5.5: Further Mathematical Biology

Question 1. This question was attempted by relatively few candidates. Most
answered (a) correctly, and derived the correct equations in (b)(i). How-
ever, many did not fully justify the assumptions underlying the model
derivation. Part (b)(ii) was less well-answered, with only a small num-
ber of candidates fully explaining why the population tends to a steady
state under the given parameter constraint. Part (c)(i) was mostly well-
answered. Almost all candidates found (c)(ii) difficult, and many did not
manage to establish the given result.

Question 2. This question was attempted by the vast majority of candidates.
Parts (a) (b)(i) were generally well-answered. In (b)(ii) there was a mistake
in Equation (2), which should have read dU/dη = −UV. Most candidates
spotted this error and so derived the correct equations (often with the signs
reversed, V 7→ −V). In the remainder of (b) most candidates chose to work
with the equations as stated in the exam paper (so that Equation (2) read
dU/dη = +UV), and equivalent marks were awarded.

Question 3. This question was generally relatively well-answered. Marks
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were often lost in (b) for not clearly showing that the stated model is
non-dimensional. Many candidates could not correctly a further condition
required for patterning.

B5.6: Nonlinear Systems

Q1. This was a popular question, attempted by most candidates. On the
whole it was answered well, and there were some very good answers.

Q2. This was an unpopular question, with only a handful of attempts,
most of which were poor.

Q3. This was the second most popular question, attempted by all but a
few candidates. There were one or two good answers, and many partial
answers. Some candidates struggled with finding the centre manifold of
the discrete system, although most seemed to know what they should be
doing in principle. The most common mistake was forgetting to make sure
the centre manifold was tangent to the centre subspace.

B6.1: Numerical Solution of Differential Equations I

Question 1
This question on the numerical approximation of Hamiltonian systems was
attempted by roughly half of the candidates who took the exam. There was
one complete answer and four strong attempts. There were also four-five
weak attempts by candidates who have, evidently, not revised this part of
the syllabus despite the fact that there was a similar problem on one of the
problem sheets, which was also discussed in the intercollegiate classes.

Question 2
This was very popular and was attempted by most of the candidates.
Part (a) was uniformly well done. In part (b) several candidates con-
fused second-order consistency with second-order convergence, and hav-
ing checked second-order consistency jumped to the conclusion that the
method is second-order convergent, without invoking Dahlquist’s theo-
rem and verifying zero-stability of the method. Most of the candidates
managed to complete part (c) of the question, either by calculating the
roots of the quadratic stability polynomial and showing that they belong
to the open unit disc in the complex plane for all values of hλ ∈ (−∞, 0) or
by using Sturm’s criterion. Part (d) was completed (or almost completed)
by four candidates only; a frequent oversight was the false assertion that
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the fact that (yn) is a monotonically decreasing sequence of positive real
numbers converging to 0 was the immediate consequence of the abso-
lute stability of the multistep method; whereas the absolute stability of
the method only implies that |yn| → 0 as n → ∞ with no guarantee of
monotonicity of the sequence (yn).

Question 3
This question on the numerical approximation of the one-dimensional heat
equation by the explicit Euler method was attempted by roughly half of the
candidates. The question was generally well done, although some of the
candidates overlooked the fact that the function u ∈ (−∞,∞) 7→ arctan u ∈
(−π/2, π/2) is Lipschitz-continuous, with Lipschitz constant equal to 1,
which is necessary for completing the proof of the desired inequality in
part (c).

B6.2: Numerical Solution of Differential Equations II

This seemed an acceptable open-book paper. Only one candidate at-
tempted question 3 on finite difference methods for hyperbolic conser-
vation laws; they scored a high mark.

All candidates attempted question 2 on the rotated five-point finite dif-
ference formula for the Dirichlet problem for the Poissson equation and
there were several good and two poor marks. Several candidates were
somewhat muddled in trying to put together a convergence proof using
the maximum principle.

All but one candidate attempted question 1 on finite differences for a two-
point boundary value problem including a first order term and the resultant
consideration of the linear algebra. No candidate produced a completely
acceptable answer to the second (and main) part of (b): most obtained
the finite difference inequality, but none sought to solve the corresponding
linear constant coefficient 2nd order finite difference equation to obtain
a desired example of violation of the maximum principle for the given
parameter value.

There were 2 poor scripts; these candidates did not seem to have really
come to terms with the material of the course. Their arguments were often
confused with inadequate definition of terms and/or description of what
they were trying to achieve.
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B6.3: Integer Programming

Question 1 was most popular with 12 attempts, highest mark of 25 and a
mean of 15.8. There was a considerable spread of marks with a standard
deviation 7.8. Some candidates struggled with the IP formulation of a
1-tree, or with the definition of a 1- tree, despite this being book work.
Depending on the formulation chosen in part c) there were multiple dif-
ferent approaches possible for part d), drawing on different parts of the
course. Most candidates tried to use total unimodularity. Question 2 was
the second most popular with 9 attempts with marks between 14 and 23.
This question seems to have been slightly easier than the other two with
a mean of 18.8 and a standard deviation of 3.2, as the derivation of Go-
moroy cuts and the dual simplex steps were a routine task. Part a) required
attention to detail, as the problem (IP) was formulated in inequality con-
strained form rather than in terms of equality constraints. Likewise, in
part d) an argument was required as to why the identified extended cover
inequalities dominate all other extended cover inequalities. No one gained
full marks, though some candidates came very close. Question 3 saw 7
attempts resulting a marks in the range from 9 to 19, with a mean of 15.1
and a standard deviation of 4.3. The greedy algorithm in part b) required
an adaptation of the standard greedy algorithm discussed in the course to
be able to deal with integral rather than binary constraints on the decision
variables. In part d) most candidates gave an extended formulation of
a graph with O(b ∗ u1 ∗ . . . ∗ un) nodes, while there exists a much more
parsimonious solution with only O(nb) nodes.

B7.1: Classical Mechanics

1. This question was popular but proved quite challenging for most can-
didates. In part b few were able to correctly identify the coordinate
transformation between the Lagrange multiplier formulation and the
reduced Lagrangian despite this being in the notes. The calculation
of the effective potential in c(i) was often incorrect with the con-
served quantity being used to eliminate variables in the Lgrangian
as opposed to the Hamiltonian. In c(ii) few were able to identify the
normal reaction with the Lagrange multiplier terms discussed in part
b.

2. Question 2 was the most popular and well done by many, although
many were unable to perform the calculations accurately in part b.

39



Few identified the trajectory as that between the unstable equilibria
ω = (0,±A, 0).

3. Question 3 was relatively straightforward for those few that had got
to that late stage of the course although it was nevertheless possible
to get bogged down in calculation.

B7.2: Electromagnetism

There where 24 attempts this year. Most students seem to understand the
main ideas and basic content of the lecture course. Many students indeed
did very well, though many marks were lost due to computational errors.

Question 1 was on electrostatics. There were a number of errors in part
(b)(ii). Some were computational but others did not set up the boundary
conditions correctly or forgot to add the potential for the charge the center
of the shell. Many students did not attempt the last part of part (c).

Question 2 This problem involved a charged rotating infinite cylinder.
There where many computational errors in the computation of the mag-
netic field (part (c)).

Question 3 This question was about the computation of the time varying
electromagnetic field due to a dipole with time dependent charges joined
by a thin conducting wire. Though this question was not as popular it was
not more difficult than Q1 or Q2 because enough information was given.
The last part seemed particularly hard.

B7.3 Further Quantum Theory

Question 1 Most candidates attempted this question on one-dimensional
scattering, with the

first part being well answered in general. In the second part, the value of
the re ection probability could be easily worked out using the continuity
of the probability current, but most candidates instead proceeded to direct
computation. There were also many mistakes regarding the form of the
wave function in the classically forbidden region, leading to erroneous
results. Very few candidates made a significant attempt on the third part,
though it could be solved even without finishing the previous part by
taking advantage of the simplified boundary condition at x = 0 when the
potential W ! 1. The fourth part was touched on schematically by a few
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candidates, but very few worked it out in detail. The Bohr-Sommerfeld
estimate of the number of bound states could be done independently of
the rest of the question, but for the most part this was unattempted.

Question 2 This question about perturbation theory and addition of angu-
lar momentum was the least popular. The

first part required an overview of the structure of Hydrogen atom sta-
tionary states with respect to both orbital/spin angular momenta and total
angular momentum. This was mostly answered well, though there were
already a number of small mistakes having to do with the range of values
of various quantum numbers. The second part introduced perturbations,
but in the first subpart the perturbations were exactly diagonalisable in
one of the two standard bases for the Hydrogen atom stationary states, so
no actual perturbation theory was required.This was recognised by a good
number of candidates, though the accuracy of the calculations was mixed.
In particular, the freedom to use rotations to set the magnetic field B to lie
in the x3 direction and the important identity S · L = 12(J2 − L2 − S2) were
missed in many cases. The second and third subparts required implement-
ing

first order degenerate perturbation theory in two different ways, but in
both cases the degeneracy turned out to be irrelevant (all o-diagonal terms
of the perturbation vanished in the natural bases). Few candidates got far
in these subparts.

Question 3 This WKB problem was another popular one. The first part re-
quired observing that the boundary conditions at the two classical turning
points are different, with one leading to a phase shift due to the connection
formulae and the other setting the wave function to zero. Many candidates
missed this and gave the Bohr-Sommerfeld condition for the case of two
smooth turning points. In the second part, the main problem was to

x the various relative coefficients of the WKB solutions in the allowed and
forbidden regions, including an important factor of two that comes from
the connection formula. There were many errors in this part, with only a
few candidates giving the completely correct wave functions. The third
part followed from a simple application of the virial theorm to the case
of a linear potential, but without using the virial theorem there would be
a very challenging integral to perform and this was a sticking point in
many cases. Finally, the last part could be solved independently and gave
a wave function that was an Ai type Airy function. Candidates had to
do a change of variables to get things into the form of an Airy equation,
then identify the Ai rather than the Bi function as the appropriate one to
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be normalisable, and extract energy levels from the boundary condition at
x = 0. Many candidates did the first of these, fewer the second, and still
fewer the third.

B8.1: Probability, Measure and Martingales

Questions 1 and 2 were equally popular, while question 3 saw 50% less
attempts in comparison. The standard of answers was also comparable be-
tween the questions, with question 2 having the highest average, question
1 slightly below and question 3 slightly lower still.

Students often lost some marks on the first easy parts of the problems due
to lack of care. For example, in Q1.a.i) students were asked to “carefully
state any properties of the conditional expectation that you use” but many
failed to do so and lost one or two marks. Similarly, when checking
that a process is a martingale some forgot to check the easy conditions
of being adapted and integrable, or failed to give any reasons for simple
computations they made. Q2.a) was testing the understanding of the
proof of Jensen’s inequality and it often proved challenging. However,
one direction was obvious here and some forgot to state it losing a mark.
Q3.a.i) confused some who were trying to use countable additivity for an
uncountable union of sets.

The last parts of questions 1 and 3 often caused difficulties. Some were
confused about conditions for L1 convergence vs L2 convergence. There
were few fully correct answers arguing that M is uniformly integrable in
Q3.b.iv).

B8.2: Continuous Martingales and Stochastic Calculus

Question 1 was generally well done, and was attempted by around 80%
of candidates. Some candidates had trouble with part aii, as they either
simply proved that the process X is bounded in L2, or asserted that uniform
integrability of X was sufficient to prove convergence. For part c, the key is
to use Lévy’s characterization, which means that one simply needs to verify
that V is a local martingale with quadratic variation 〈V〉t = t. Attempting
to prove the result directly, using the increments of V, is difficult.

Question 2 was attempted by a quarter of candidates. Parts a and b were
generally well done, with some candidates making the error of implicitly
assuming that the martingales start at zero. Part c posed more difficulty;
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in part cii many candidates did not successfully show that the integral
H�W converges, with many only showing that the quadratic variation is
bounded. The key is to look at the ‘tail’ of the sum, that is, to show that∑

j>k H( j)
•W( j)

→ 0 inH2.

Question 3 was attempted by around 80% of candidates. The initial parts
of the question were well done, with some candidates forgetting to specify
the distribution of X fully in part aii (either omitting to state the mean or
variance), or not clearly justifying why the integral is Gaussian. In part
b, some candidates attempted to use the solution of part ai to write down
the quadratic variation of X, which is misleading (as t appears inside the
stochastic integral). The convergence in part bii was generally well done,
provided candidates noticed that Y is a nonnegative local martingale. Part c
posed some difficulty, with candidates not clearly explaining why the non-
convergence of X implies that Y must also not converge (it depends on s
having a continuous monotone inverse, not simply on s being continuous).
Part cii depends on applying the optional stopping theorem to Y (rather
than X, which is not a (local) martingale).

B8.3: Mathematical Models of Financial Derivatives

Question 1 was taken by most candidates. The question essentially cov-
ered the basic material for the course, but required it to be re-derived for
the Bachelier model, rather than the BlackScholes model. Some students
struggled as they simply reproduced the calculations for the BlackScholes
model verbatim, rather than making the necessary adjustments for the
different underlying dynamics.

Question 2 was taken by around two thirds of candidates. Many students
gave a full and detailed summary of the BlackScholes argument in part (a),
rather than stating the definition of a replicating portfolio, and outlining its
role (we use delta-hedging to construct a replicating portfolio, and hence
obtain prices using the law of one price). For part (b), many candidates
did not recall the definition of a forward price, and so were not able to give
a clear statement of the construction of a risk-free contract using stocks
and forwards, or assumed that the forward contract was the same as the
contract they were seeking to price (with certain payoff 1). For the latter
parts of the question, many answers did not use the function V derived in
part (c) to full effect, instead re-derived the value (for different choices of p)
in each of the later sections. This led to incomplete answers (presumably
due to time pressure).
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Question 3 was taken by around half of the candidates. Part (a) of the
question was generally well don, as it was similar to examples shown in
lectures. Some candidates had difficulty with (aiii), demonstrating a lack
of familiarity with working with payoff diagrams. Part (b) was generally
less well done. Common issues were incorrectly assuming the option in
(bi) was a simple barrier option, not giving a clear answer for part (biii),
or simply not submitting answers to these questions (presumably due to
time pressure).

Overall the standard of answers was very varied, with some candidates
giving answers to most sections, while others struggled significantly with
later parts of the exam.

B8.4: Information Theory

Question 1 Few students made mistakes in part (a), which are on basic
inequalities. Some students failed in the proof of the convexity in part
(b.i), and part (b.iii) is the one to distinguish candidates’ understanding on
convexity and the definition of divergence. Surprisingly, most candidates
did well in part (c) on the optimisation.

Question 2 Part (a) should be an easy disproof of the optimality by simple
counter examples, while two candidates answered the question with a big
theory. In part (b), many candidates lost one or two points in different
subparts because they didn’t mention that new codes they constructed are
prefix code. For this part, (b.iii), (b.v) and (b.vi) are most difficult. There
are answers different from the standard one, some of which are better and
simpler, but some are lengthy while not very relevant. Part (c) and (d) are
based on the conclusions in part (b) and answers can be easily reshaped
from lecture notes.

Question 3 This questions sounds the easiest among the 3 questions in
the paper, the average marks is 2 points higher than the other two. Part
(a) was on the definition of DMC and capacity, and part (b) was on the
application of a simple inequality. Almost all candidates got full marks
in these two parts. Part (c) are on three cases of the given DMC, which
sounds not as challenging as it was expected, and most candidates pro-
vided perfect answers. Part (c) was also not difficulty, but many students
had not explained different measures of the error rate.

Summary: Marks in this paper are high, many students get 40+ out of
50. It shows that students have a good understanding on the subject. But
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it may also shows that the paper was not challenging enough. It clearly
differentiates poor candidates from good ones, but it is not very successful
to differentiates strong candidates from good ones.

B8.5: Graph Theory

No comments

BO1.1: History of Mathematics

Both the extended coursework essays and the exam scripts were blind
double-marked. The marks for essays and exam were reconciled sepa-
rately. The two carry equal weight when determining a candidate’s final
mark. The first half of the exam paper (Section A) consists of six extracts
from historical mathematical texts, from which candidates must choose
two on which to comment; the second half (Section B) gives candidates a
choice of three essay topics, from which they must choose one. The Sec-
tion B essay accounts for 50% of the overall exam mark; the answers to
each of the Section A questions count for 25%.

Throughout the course, candidates were invited to analyse historical math-
ematical materials from the points of view of their ‘context’, ‘content’, and
‘significance’, and these were the three aspects that candidates were asked
to consider when looking at the extracts provided in Section A of the exam
paper. Indeed, most candidates chose to use these as subheadings within
their answer. This is entirely acceptable, although some candidates had a
tendency to place details under the wrong headings.

The Section A questions 1–6 were attempted by 3, 5, 6, 4, 0, and 2 candi-
dates, respectively. The only specific extracts that candidates had certainly
seen before were those of questions 2, 5 and 6 (though they had seen
the diagram in question 4, if not the accompanying text). Questions 1
and 2 related to core material from the lecture course, namely calculus
and pre-calculus. They were generally well done, though some candidates
omitted to mention an important feature of the extract in question 2: that
it presents an algebraic, rather than geometric, approach to the early cal-
culus. Although question 3 was the most popular question in this section,
there were some misinterpretations of Euler’s slightly convoluted prose:
he had circumstantial evidence that his conjecture was true (although we
now know that it is not). A minor point not mentioned here by some can-
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didates was that the solutions sought were specifically solutions in radicals.
Question 4 was generally well done, though in places lacked some of the
earlier background to the development of the understanding of complex
numbers. Questions 5 and 6 were the harder questions of this section:
question 5 because it related only to the material of a single lecture (hence
its being rejected by all candidates), and question 6 because there is a limit
to what can be said under ‘significance’, so it was necessary to get this just
right in order to score high marks.

This year, the Section B questions were generally better done than those of
Section A, though some answers could have been organised better. Ques-
tions 7–9 were attempted by 3, 2, and 5 candidates, respectively. Question 7
was probably the easiest of this section, being a standard form of question,
with plenty of material from the lecture course to draw upon. Question 8,
by contrast, was probably the hardest, since this is a topic (the influence
of Euclid aside) that received only a little attention during the course. The
most popular question here, question 9, was generally well done, with
several candidates first considering what counts as pure or applied math-
ematics, although some of the categorisations were questionable. After
addressing this point, not all candidates brought the discussion back ade-
quately to the mathematicians themselves.

The standard of the extended essays was on the whole very high, with
good use of source materials despite the current difficult circumstances.
There were some excellent examples of engaging literary style, which the
assessors read with genuine enjoyment. Ideas were expressed well, and
showed good historical understanding and innovative thinking. Most
candidates displayed their appreciation of the need to locate the studied
texts within their proper context, rather than simply seeking to interpret
them in light of modern ideas. This was combined with a good technical
understanding. A common pitfall within the essays was a tendency to be
a little unclear in places about the meaning of the word ‘analysis’, a crucial
point in an essay about the changing meaning of the word. The term
sometimes seemed to be used implicitly in its modern sense, with a risk of
distorting the historical story. Some candidates failed to mention infinite
series in their essays, although these are arguably a key part of the story
via the important link between having functions as a basis for analysis,
and the use of infinite series to establish certain quantities as functions.
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Statistics Options

Reports of the following courses may be found in the Mathematics &
Statistics Examiners’ Report.

SB1.1/1.2: Applied and Computational Statistics

SB2.1: Foundations of Statistical Inference

SB2.2: Statistical Machine Learning

SB3.1: Applied Probability

SB3.2: Statistical Lifetime Models

SB4: Actuarial Science

Computer Science Options

Reports on the following courses may be found in the Mathematics &
Computer Science Examiners’ Reports.

CS3a: Lambda Calculus & Types

CS4b: Computational Complexity

Philosophy Options

The report on the following courses may be found in the Philosophy Ex-
aminers’ Report.

102: Knowledge and Reality

127: Philosophical Logic

129: Early Modern Philosophy
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E. Comments on performance of identifiable individuals

1.Aggregation of marks for the award of the classification on the success-
ful completion of Parts A and B

Classification for a candidate was determined through the following method:

• 10 units at Part A (counting A2 as a double-unit and, for candidates
offering 6 long options, two of the long option papers as half-units)

• 6 units (or equivalent) at Part B.

The two average USMs will be:

1. The relative weightings of the Parts is as follows:

(a) The weighting of Part A is 40%.

(b) The weighting of Part B is 60%.

2. The relative weightings of the Parts is as follows:

(a) The weighting of Part A is 100%.

(b) The weighting of Part B is 0%.

The first class Strong Paper Rule says that to get a first class degree the
candidate must have:

(a) average USM ≥ 69.5;

(b) at least 6 units in Parts A and B with USMs ≥ 70;

(c) at least 2 units in Part B with USMs ≥ 70.

The analogous rules apply for II.1 and II.2 degrees. The examiners con-
sidered all candidates near each borderline who had been caught by the
Strong Paper Rule, that is, who satisfied (a) but failed (b) or (c), and so
were due to receive the lower degree class. For one such candidate at
the I/II.1 borderline the examiners decided to suspend the examination
conventions, and placed the candidate in the first class.
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